tugas besar

 

[menuju akhir]
DAFTAR ISI
4. Dasar Teori
    a) Prosedur
    b) Rangkaian simulasi dan prinsip kerja
    c) Video simulasi

1. Pendahuluan [kembali]

kontrol kolam ikan merupakan proses pengendalian dan pengaturan kondisi kolam ikan.Kontrol kolam ikan yang efisien sangat penting untuk memastikan kesehatan ikan dan mengoptimalkan produktivitas budidaya. Teknologi sensor modern menawarkan solusi canggih untuk memantau dan mengontrol berbagai parameter lingkungan dalam kolam ikan.

Dalam proyek ini, kami akan menggunakan beberapa jenis sensor, yaitu sensor hujan (rain sensor), sensor air (water sensor), sensor getaran (vibration sensor), sensor kelembaban tanah (HIH5030), dan sensor cahaya (LDR). Setiap sensor memiliki peran spesifik dalam memastikan kondisi ideal bagi ikan di dalam kolam.

Dengan memanfaatkan kelima jenis sensor ini, kita dapat mengembangkan sistem kontrol otomatis yang cerdas untuk kolam ikan. Sistem ini akan mampu memantau kondisi lingkungan secara real-time dan mengambil tindakan yang diperlukan untuk menjaga keseimbangan ekosistem kolam. Integrasi teknologi sensor dalam budidaya ikan tidak hanya meningkatkan efisiensi operasional tetapi juga memastikan keberlanjutan dan kesehatan populasi ikan 




2. Tujuan [kembali]


  • Mampu menjelaskan dan memahami prinsip kerja transistor bipolar, dan op amp pada rangkaian kontrol tank air.
  • Mampu mengaplikasikan transistor bipolar, op amp, water level sensor, PIR, NTC, dan rain sensor pada rangkaian kontrol kolam Ikan.
  • Mampu merangkai rangkaian di proteus.


3. Alat dan Bahan [kembali]


 A.Alat

  • Voltmeter
    Volt meter adalah sebuah alat ukur yang biasa digunakan untuk mengukur besar tegangan listrik yang ada dalam sebuah rangkaian listrik. Jika tegangan berupa tegangan DC maka pengalinya di set pada bagian DC, dan jika AC maka diset pada bagian AC. Hasil pada layar akan dikali dengan pengalinya terlebih dahulu, maka akan muncul nilai tegangan pada rangkaian.

Spesifikasi dan Pinout Voltmeter :


Generator Daya
  • Baterai
    Baterai (Battery) adalah sebuah alat yang dapat merubah energi kimia yang disimpannya menjadi energi listrik yang dapat digunakan sebagai sumber daya oleh suatu perangkat elektronik.

Spesifikasi dan Pinout Baterai : 
  • Input voltage: ac 100~240v / dc 10~30v
  • Output voltage: dc 1~35v
  • Max. Input current: dc 14a
  • Charging current: 0.1~10a
  • Discharging current: 0.1~1.0a
  • Balance current: 1.5a/cell max
  • Max. Discharging power: 15w
  • Max. Charging power: ac 100w / dc 250w
  • Jenis batre yg didukung: life, lilon, lipo 1~6s, lihv 1-6s, pb 1-12s, nimh, cd 1-16s
  • Ukuran: 126x115x49mm
  • Berat: 460gr
  • Generator Supply
    Power Supply (Catu Daya) adalah sebuah komponen yang digunakan untuk memasok atau menyediakan daya listrik ke sebuah atau lebih perangkat. Power supply saat ini telah dirancang sedemikian rupa untuk mampu mengubah bahan dasar energi semisal energi matahari, angin, hingga kimia menjadi energi listrik.

B.Bahan
  • Resistor 
    Resistor merupakan suatu komponen elektronik yang memiliki dua pin dan nilai resistansi atau hambatan tertentu yang berfungsi untuk membatasi dan mengatur tegangan listrik dan arus listrik. (V=I.R)
Cara menghitung nilai resistor :
Contoh : 
Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau   = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 4 : Perak  = Toleransi 10%
Maka nilai resistor tersebut adalah 10 * 105 = 1.000.000 Ohm atau 1 MOhm dengan toleransi 10%

Spesifikasi : 

  • Kapasitas Pompa Air
Kapasitor berfungsi untuk start atau memutar rotor untuk pertama kali.
Spesifikasi kapasitor pompa air :
  • Dioda
Spesifikasi Dioda :
1. arus searah jangka panjang maksimum pada 75 ° C - 1.0 A
2. arus pulsa maksimum dengan durasi pulsa 3,8 ms - 30 A
3. drop tegangan melintasi dioda pada arus 1,0A - 1,1 V
4. kisaran suhu operasi - -65 ... + 175 ° С
5. frekuensi kerja maksimum - 1 MHz
  • Transistor Bipolar BC547
Transistor BC547 merupakan transistor jenis NPN. Prinsip kerja dari transistor NPN adalah: arus akan mengalir dari kolektor ke emitor jika basisnya dihubungkan ke ground (negatif). Arus yang mengalir dari basis harus lebih kecil daripada arus yang mengalir dari kolektor ke emitor, oleh sebab itu maka ada baiknya jika pada pin basis dipasang sebuah resistor.
Konfigurasi pin transistor BC547 :
Spesifikasi transistor BC547 :
1. DC current gain maksimal 800
2. Arus Collector kontinu (Ic) 100mA
3. Tegangan Base-Emitter (Vbe) 6V
4. Arus Base maksimal 5mA
  • Induktor

Induktor berfungsi untuk menyimpan energi pada medan magnet yang ditimbulkan oleh arus listrik yang melintasinya.
Spesifikasi induktor :
  • Op Amp LM358
    IC LM358 berungisi sebagai rangkaian detektor inveting untuk membandingkan dua keadaan.
Konfigurasi pin Op Amp, Gelombang I/O Op Amp dan Spesifikasi Op Amp :
  • Ground
    Ground adalah titik yang dianggap sebagai titik kembalinya arus listrik arus searah atau titik kembalinya sinyal bolak balik atau titik patokan (referensi) dari berbagai titik tegangan dan sinyal listrik di dalam rangkaian elektronika dan berfungsi sebagai pelindung ke seluruh sistem.
  • Logicstate
    Logicstate berfungsi untuk menunjukkan keadaan logika o dan logika 1. Sinyal biner adalah sinyal digital yang hanya memiliki dua nilai yang valid.

Komponen Input
  • Water Level Sensor
    Water level sensor berfungsi untuk mendeteksi ketinggian air.
Konfigurasi pin water level sensor :
"S" stand for signal input
"+" stand for power supply
"-" stand for GND

Spesifikasi water level sensor :
1. Tegangan kerja: 5V
2. Bekerja Saat Ini: <20ma br="">3. Antarmuka: Analog
4. Lebar deteksi: 40mm × 16mm
5. Suhu Kerja: 10 ℃ ~ 30 ℃
6. Berat: 3g
7. Ukuran: 65mm × 20mm × 8mm
8. Antarmuka yang kompatibel dengan Arduino
9. Konsumsi daya rendah
10. Sensitivitas tinggi
11. Sinyal tegangan keluaran: 0 ~ 4.2V


Aplikasi water level sensor :
1. Mendeteksi curah hujan Rainfall detecting
2. Kebocoran cairan
3. Kepenuhan tank air

Grafik respon water level sensor :

  • NTC

    NTC berfungsi sebagai sensor pada rangkaian elektronika yang berhubungan dengan Suhu (Temperature).

Spesifikasi sensor NTC :
1. Resistance pada 25DegC = 10 Ohm
2. Max Steady State Current = 7A
3. Approx.R @ Max.Cur =0.130 Ohm
4. Dissipation factor ()(mW/) = 32
5. Thermal time constant (s) = 150

Grafik respon sensor NTC :
  • Rain Sensor 

Rain sensor berfungsi untuk mendeteksi kebocoran dari tank air.
Konfigurasi pin rain sensor :

Spesifikasi rain sensor :
1. Konsumsi daya sangat sedikit
2. Sensor ini bermaterial dari FR-04 dengan dimensi 5cm x 4cm berlapis nikel dan dengan kualitas tinggi pada kedua sisinya
3. Pada lapisan module mempunyai sifat anti oksidasi sehingga tahan terhadap korosi
4. Tegangan kerja masukan sensor 3.3V – 5V
5. Menggunakan IC comparator LM393 yang stabil
6. Output dari modul comparator dengan kualitas sinyal bagus lebih dari 15mA
7. Dilengkapi lubang baut untuk instalasi dengan modul lainnya
8. Terdapat potensiometer yang berfungsi untuk mengatur sensitifitas sensor
9. Terdapat 2 Output yaitu digital (0 dan 1) dan analog (tegangan)
10. Dimensi PCB yaitu 3.2 cm x 1.4 cm

Grafik respon rain sensor :
  • Vibration Sensor
    Sensor getaran atau vibration sensor merupakan jenis sensor yang berfungsi untuk mendeteksi adanya getaran dan akan diubah ke dalam sinyal listrik.


grafik respon sensor  vibration




  • Sensor  kelembapan
  

grafik respon sensor kelembapan 



grafik respon sensor LDR













Komponen Output
  • Relay
    Relay berfungsi untuk menyambung dan memutuskan arus listrik dalam sebuah rangkaian.
Konfigurasi pin relay :
Spesifikasi relay :
  • LED
LED berfungsi sebagai indikator.
Spesifikasi pin LED :
Konfigurasi pin LED :
  • Heater
Heater adalah komponen yang membuat aliran listrik menjadi panas.
  • Motor  DC
Motor DC berfungsi sebagai motor penggerak pompa air dan pendingin air.
Konfigurasi motor DC :
Spesifikasi motor DC :
1. Stepper motor tipe bipolar yang bekerja pada tegangan 9V.
2. Tipe: bipolar.
3. Kondisi: refurbished, sudah diuji @ 9V.
4. Tegangan kerja: 12V (new-rated), 259mA.
5. Resolusi: 7,5º/step (full step).
6. Torsi: 38,2 mN.m (new-rated).
  • Buzzer
Buzzer berfungsi sebagai peringatan bahwa tank air mengalami kebocoran.
Konfigurasi pin buzzer :
Spesfikasi Buzzer :








4. Dasar Teori [kembali]

    


    • Resistor



      Resistor adalah komponen elektronika pasif yang memiliki nilai resistansi atau hambatan tertentu yang berfungsi untuk membatasi dan mengatur arus listrik dalam suatu rangkaian elektronika. Satuan Resistor adalah Ohm (simbol: Ω) yang merupakan satuan SI untuk resistansi listrik. Resitor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan hukum Ohm (V =I.R).

      Simbol resistor



      Cara menentukan nilai resistor dengan gelang warna :

      1. Masukan angka langsung dari kode warna gelang pertama.
      2. Masukan angka langsung dari kode warna gelang kedua.
      3. Masukan angka langsung dari kode warna gelang ketiga.
      4. Masukkan jumlah nol dari kode warna gelang keempat atau pangkatkan angk tersebut dengan 10 (10^n) dan dikalikan ke ketiga warna gelang tadi.
      5. Gelang kelima ini merupakan nilai toleransi dari resistor.



      Rumus Resistor

      Seri : Rtotal = R1 + R2 + R3 + ….. + Rn
      Dimana :
      Rtotal = Total Nilai Resistor
      R1 = Resistor ke-1
      R2 = Resistor ke-2
      R3 = Resistor ke-3
      Rn = Resistor ke-n

      Paralel: 1/Rtotal = 1/R1 + 1/R2 + 1/R3 + ….. + 1/Rn
      Dimana :
      Rtotal = Total Nilai Resistor
      R1 = Resistor ke-1
      R2 = Resistor ke-2
      R3 = Resistor ke-3
      Rn = Resistor ke-n


    • Transistor Bipolar



      Transistor adalah sebuah komponen di dalam elektronika yang diciptakan dari bahan-bahan semikonduktor dan memiliki tiga buah kaki. Masing-masing kaki disebut sebagai basis, kolektor, dan emitor.
      1. Emitor (E) memiliki fungsi untuk menghasilkan elektron atau muatan negatif.
      2. Kolektor (C) berperan sebagai saluran bagi muatan negatif untuk keluar dari dalam transistor.
      3. Basis (B) berguna untuk mengatur arah gerak muatan negatif yang keluar dari transistor melalui kolektor.






    •  Transistor Bipolar
    • Transistor Bipolar terdiri dari dua jenis yaitu Transistor NPN dan Transistor PNP. • Transistor NPN adalah transistor bipolar yang menggunakan arus listrik kecil dan tegangan positif pada terminal Basis untuk mengendalikan aliran arus dan tegangan yang lebih besar dari Kolektor ke Emitor.
      • Transistor PNP adalah transistor bipolar yang menggunakan arus listrik kecil dan tegangan negatif pada terminal Basis untuk mengendalikan aliran arus dan tegangan yang lebih besar dari Emitor ke Kolektor.


      3 konfigurasi transistor bipolar

      Cara membedakan transistor NPN dengan PNP 


      Karakteristik input
      Transistor adalah komponen aktif yang menggunakan aliran electron sebagai prinsip kerjanya didalam bahan. Sebuah transistor memiliki tiga daerah doped yaitu daerah emitter, daerah basis dan daerah disebut kolektor. Transistor ada dua jenis yaitu NPN dan PNP. Transistor memiliki dua sambungan: satu antara emitter dan basis, dan yang lain antara kolektor dan basis. Karena itu, sebuah transistor seperti dua buah dioda yang saling bertolak belakang yaitu dioda emitter-basis, atau disingkat dengan emitter dioda dan dioda kolektor-basis, atau disingkat dengan dioda kolektor.
      Bagian emitter-basis dari transistor merupakan dioda, maka apabila dioda emitter-basis dibias maju maka kita mengharapkan akan melihat grafik arus terhadap tegangan dioda biasa. Saat tegangan dioda emitter-basis lebih kecil dari potensial barriernya, maka arus basis (Ib) akan kecil. Ketika tegangan dioda melebihi potensial barriernya, arus basis (Ib) akan naik secara cepat.

      Karakteristik output
      Sebuah transistor memiliki empat daerah operasi yang berbeda yaitu daerah aktif, daerah saturasi, daerah cutoff, dan daerah breakdown. Jika transistor digunakan sebagai penguat, transistor bekerja pada daerah aktif. Jika transistor digunakan pada rangkaian digital, transistor biasanya beroperasi pada daerah saturasi dan cutoff. Daerah breakdown biasanya dihindari karena resiko transistor menjadi hancur terlalu besar.

      Gelombang I/O Transistor

    • Kapasitor Pompa Air
    • Kapasitor pada motor listrik 1 fasa hanya berfungsi sebagai starter atau membantu motor untuk bisa memulai berputar. Didalam motor listrik 1 fasa kapasitor terdapat 2 koil/kumparan, yaitu koil utama dan koil bantu. Ketika steker listrik di tancapkan dan arus listrik masuk, maka ke 2 koil tersebut mendapatkan aliran listrik. Koil utama akan secara langsung dialiri listrik; sementara pada koil bantu arus listrik akan melewati kapasitor lebih dahulu sebelum mengalirinya. Pada saat ini terjadi tarik menarik medan magnit yang menyebabkan rotor mulai berputar, setelah motor berputar kapasitor akan memutuskan aliran listrik sehingga koil bantu saat ini sudah tidak menerima pasokan listrik lagi.

      Pada intinya kapasitor hanya berfungsi untuk start atau memutar rotor untuk pertamakali. Jadi ketika kapasitor rusak maka arus tak bisa melewati koil bantu sehingga motor listrik pompa air tidak berputar.

      a. Fungsi Kapasitor Pompa Air sebagai Kapasitor Start

      Jika sobat hanya melihat satu kapasitor saja pada pompa air maka fungsi kapasitor pada pompa air ini adalah sebagai kapasitor start (capacitor start) untuk membantu putaran awal saat pompa pertama kali dinyalakan.

      Perlunya kapasitor ini karena torsi putaran awal dinamo dengan supply listrik arus AC yang cukup besar sehingga tenaga dari jala listrik PLN saja tidak cukup. Oleh karena itu kapasitor pada pompa air dipasang pada bagian coil start gulungan dinamo pompa air.

      Kurang lebih berikut ini secara umum adalah gambar rangkaian listrik pada pompa air, perlu diketahui mungkin pada beberapa model terdapat perbedaan :
      Jika tidak ada kapasitor start atau kondisi kapasitor sudah dalam keadaan rusak pada pompa air maka dinamo hanya akan berdengung saja karena tidak cukup tenaga untuk memutar motor listrik. Untuk itulah fungsi kapasitor pada pompa air digunakan.

      b. Fungsi Kapasitor Pompa Air sebagai Kapasitor Run

      Selain sebagai kapasitor start, pada beberapa pompa air juga terdapat kapasitor running (capacitor running), fungsi kapasitor running pada pompa air adalah supaya putaran dinamo menjadi lebih halus sekaligus lebih bertenaga.

      Kapasitor Run biasanya memiliki nilai kapasitas yang lebih rendah dari kapasitor start dan biasanya bukan dari jenis kapasitor elektrolit. Jika terdapat kerusakan pada run kapasitor maka harus diganti dengan nilai yang sesuai karena jika kapasitansi terlalu tinggi akan menyebabkan pergeseran fasa tidak sempurna. Berikut ini contoh diagram pompa air dengan kapasitor start dan running :

      Jika kapasitor Run terlalu tinggi, maka akan menyebabkan pergeseran fasa kurang dari seharusnya, arus yang mengalir ke dinamo akan terlalu besar dan menyebabkan dinamo overheat.

      Sebaliknya jika kapasitor Run terlalu rendah akan menyebabkan pergeseran fasa menjadi lebih besar, arus ke dinamo menjadi kurang yang menyebabkan performa dinamo pompa air menurun dan suara pompa menjadi kasar.

    • Dioda

      Dioda adalah komponen elektronika yang terdiri dari dua kutub dan berfungsi menyearahkan arus. Komponen ini terdiri dari penggabungan dua semikonduktor yang masing-masing diberi doping (penambahan material) yang berbeda, dan tambahan material konduktor untuk mengalirkan listrik.

      Dalam ilmu fisika dioda digunakan untuk penyeimbang arah rangkaian elektronika. Elektronika memiliki dua terminal yaitu anoda berarti positif dan katoda berarti negatif. Prinsip kerja dari anode berdasarkan teknologi pertemuan positif dan negative semikonduktor. Sehingga anode dapat menghantarkan arus litrik dari anoda menuju katoda, tetapi tika sebaliknya katoda ke anoda.

      Dioda digambarkan seperti sebuah switch/saklar dimana saklar tersebut hanya akan bekerja di beri tegangan atau arah arus sesuai dengan polaritas kaki ioda itu sendiri. Pada arah bias maju, bias kaki anoda diberikan tegangan (+) dan tegangan (-) pada katoda maka dioda akan dapat mengalirkan arus pada satu arah. Sedangkan pada arah arus mundur bias dimana kaki anoda diberi tegangan (-) dan tegangan (+) pada katoda maka saklar menjadi terbuka atau saklar OFF.

      Jenis-jenis dioda : 1. Dioda LED yang berfungsi sebagai lampu Indikator ataupun lampu penerangan 2. Dioda Penyearah (Dioda Biasa atau Dioda Bridge) yang berfungsi sebagai penyearah arus AC ke arus DC. 3. Dioda Schottky yang berfungsi sebagai Pengendali 4. Dioda Zener yang berfungsi sebagai pengaman rangkaian dan juga sebagai penstabil tegangan. 5. Dioda Photo yang berfungsi sebagai sensor cahaya

    • Induktor

      Induktor merupakan komponen Elektronika Pasif yang sering ditemukan dalam Rangkaian Elektronika, terutama pada rangkaian yang berkaitan dengan Frekuensi Radio. Induktor atau dikenal juga dengan Coil adalah Komponen Elektronika Pasif yang terdiri dari susunan lilitan Kawat yang membentuk sebuah Kumparan. Pada dasarnya, Induktor dapat menimbulkan Medan Magnet jika dialiri oleh Arus Listrik. Medan Magnet yang ditimbulkan tersebut dapat menyimpan energi dalam waktu yang relatif singkat. Dasar dari sebuah Induktor adalah berdasarkan Hukum Induksi Faraday.

      Kemampuan Induktor atau Coil dalam menyimpan Energi Magnet disebut dengan Induktansi yang satuan unitnya adalah Henry (H). Satuan Henry pada umumnya terlalu besar untuk Komponen Induktor yang terdapat di Rangkaian Elektronika. Oleh Karena itu, Satuan-satuan yang merupakan turunan dari Henry digunakan untuk menyatakan kemampuan induktansi sebuah Induktor atau Coil. Satuan-satuan turunan dari Henry tersebut diantaranya adalah milihenry (mH) dan microhenry (µH). Simbol yang digunakan untuk melambangkan Induktor dalam Rangkaian Elektronika adalah huruf “L”.

    • Op Amp

      Penguat operasional atau yang dikenal sebagai Op-Amp merupakan suatu rangkaian terintegrasi atau IC yang memiliki fungsi sebagai penguat sinyal, dengan beberapa konfigurasi. Secara ideal Op-Amp memiliki impedansi masukan dan penguatan yang tak berhingga serta impedansi keluaran sama dengan nol. Dalam prakteknya, Op-Amp memiliki impedansi masukan dan penguatan yang besar serta impedansi keluaran yang kecil.

      Op-Amp memiliki beberapa karakteristik, diantaranya:
      a. Penguat tegangan tak berhingga (AV = ∼)
      b. Impedansi input tak berhingga (rin = ∼)
      c. Impedansi output nol (ro = 0) d. Bandwidth tak berhingga (BW = ∼)
      d. Tegangan offset nol pada tegangan input (Eo = 0 untuk Ein = 0)

      Rangkaian dasar Op Amp

    • Operational Amplifier (OP-AMP)

      1. Pendahuluan
      Penguat operasional (Operational Amplifier) atau yang biasa disebut dengan op-amp, merupakan penguat elektronika yang banyak digunakan untuk membuat rangkaian detektor, komparator, penguat audio, video, pembangkit sinyal, multivibrator, filter, ADC, DAC, rangkaian penggerak dan berbagai macam rangkaian analog lainnya.
      Op-amp pada umumnya tersedia dalam bentuk rangkaian terpadu yang memiliki karakteristik mendekati karakteristik penguat operasional ideal tanpa perlu memperhatikan apa yang terdapat di dalamnya.
      Ada tiga karakteristik utama op-amp ideal, yaitu;
      1. Gain sangat besar (AOL >>).
      Penguatan open loop adalah sangat besar karena feedback-nya tidak ada atau RF = tak terhingga.
      2. Impedansi input sangat besar (Zi >>).
      Impedansi input adalah sangat besar sehingga arus input ke rangkaian dalam op-amp sangat kecil sehingga tegangan input sepenuhnya dapat dikuatkan.
      3. Impedansi output sangat kecil (Zo <<).
      Impedansi output adalah sangat kecil sehingga tegangan output stabil karena tahanan beban lebih besar yang diparalelkan dengan Zo <<. Adapun simbol op-amp adalah seperti pada gambar
      Simbol op-amp dimana, V1 adalah tegangan masukan dari kaki non inverting V2 adalah tegangan masukan dari kaki inverting Vo adalah tegangan keluaran sehingga
      Tegangan output maksimum secara praktis dihasilkan sekitar 2 Volt dibawah tegangan sumber Vs dan disebut juga sebesar tegangan saturasi Vsat Gambar 65 memperlihatkan kurva karakteristik hubungan Vi terhadap Vo untuk rangkaian op-amp dengan tegangan input dihubungkan ke kaki input non inverting (+) dan tegangan 0 Volt (di ground) ke kaki input inverting (-). Sesuai dengan nama input op-amp yaitu apabila input dimasukkan ke kaki non inverting (+) yang artinya tidak membalik maka tegangan output yang dihasilkan adalah sefasa dengan tegangan input. Seperti terlihat pada gambar 1 yaitu saat input Vi bertegangan positif maka output yang dihasilkan juga bertegangan positif dan sebaliknya.
      Contoh 1:
      Diket:
      Rangkaian non inverting dengan Vi dihubungkan ke input (+) dan men-ground input (-). Op-amp yang digunakan adalah IC 741 dengan AOL = 200.000 x dan tegangan sumber yang digunakan adalah ±Vs=±15 Volt.
      Dit:
      Artinya, berdasarkan gambar 65 maka untuk berfungsi sebagai rangkaian detektor maka tegangan input Vi adalah > 65 µ Volt dan < -65 µ Volt sehingga akan menghasilkan Vo dalam kondisi +Vsat atau –Vsat.
      2. Detektor
      Rangkaian detektor ada 2 macam yaitu:
      1.1. Detektor inverting
      a. Dengan Vref = 0 Volt
      Rangkaian detektor inverting dengan tegangan input Vi berupa gelombang segitiga dan tegangan referensi Vref = 0 Volt adalah seperti gambar 66.
      Dengan menggunakan persamaan (1) maka Vi = V2 dan Vref = V1 sehingga bentuk gelombang tegangan output Vo ( ) yang dihasilkan adalah seperti gambar 67.
      Adapun kurva karakteristik Input-Ouput (I-O) adalah seperti gambar 68. Dengan Vi > 0 (artinya Vi > 65 µ Volt untuk rangkaian detektor dengan ±Vs = ±15 Volt) maka Vo = -Vsat dan sebaliknya bila Vi < 0 (artinya Vi < -65 µ Volt untuk rangkaian detektor dengan ±Vs = ±15 Volt) maka Vo = +Vsat.
      b. Dengan Vref = bertegangan positif
      Rangkaian detektor inverting dengan tegangan input Vi berupa gelombang segitiga dan tegangan referensi Vref > 0 Volt adalah seperti gambar 69.
      Dengan menggunakan persamaan (1) maka Vi = V2 dan Vref = V1 sehingga bentuk gelombang tegangan output Vo ( ) yang dihasilkan adalah seperti gambar 70.
      Adapun kurva karakteristik Input-Ouput (I-O) adalah seperti gambar 71. Dengan Vi > Vref maka Vo = -Vsat dan sebaliknya bila Vi < Vref maka Vo = +Vsat.
      c. Dengan Vref = bertegangan negatif
      Rangkaian detektor inverting dengan tegangan input Vi berupa gelombang segitiga dan tegangan referensi Vref < 0 Volt adalah seperti gambar 72.
      Dengan menggunakan persamaan (1) maka Vi = V2 dan Vref = V1 sehingga bentuk gelombang tegangan output Vo ( ) yang dihasilkan adalah seperti gambar 73.
      Adapun kurva karakteristik Input-Ouput (I-O) adalah seperti gambar 74. Dengan Vi > Vref maka Vo = -Vsat dan sebaliknya bila Vi < Vref maka Vo = +Vsat.
      1.2 Detektor non inverting
      a. Dengan Vref = 0 Volt
      Rangkaian detektor non inverting dengan tegangan input Vi berupa gelombang segitiga dan tegangan referensi Vref = 0 Volt adalah seperti gambar 75.
      Adapun kurva karakteristik Input-Ouput (I-O) adalah seperti gambar 77. Dengan Vi > 0 maka Vo = +Vsat dan sebaliknya bila Vi < 0 maka Vo = -Vsat.
      b. Dengan Vref = bertegangan positif
      Rangkaian detektor non inverting dengan tegangan input Vi berupa gelombang segitiga dan tegangan referensi Vref > 0 Volt adalah seperti gambar 78
      Adapun kurva karakteristik Input-Ouput (I-O) adalah seperti gambar 80. Dengan Vi > 0 maka Vo = +Vsat dan sebaliknya bila Vi < 0 maka Vo = -Vsat.
      c. Dengan Vref = bertegangan negatif
      Rangkaian detektor non inverting dengan tegangan input Vi berupa gelombang segitiga dan tegangan referensi Vref < 0 Volt adalah seperti gambar 81.

      Adapun kurva karakteristik Input-Ouput (I-O) adalah seperti gambar 83. Dengan Vi > 0 maka Vo = +Vsat dan sebaliknya bila Vi < 0 maka Vo = -Vsat.
      3. Komparator
      Ketika rangkaian detektor dengan input Vi ditumpangi oleh noise Vn yang berfrekuensi tinggi seperti gambar 84 maka frekuensi output menjadi tidak sama dengan frekuensi input seperti terlihat pada gambar 85.
      Untuk menghindari pengaruh tegangan noise Vn yang membuat frekuensi output tidak sama dengan frekuensi inputnya maka digunakan rangkaian komparator dengan feedback positif seperti gambar 86 dan menjadikan frekuensi output sama dengan frekuensi input walaupun ada terjadi pergeseran fasa seperti terlihat pada gambar 87.
      Rangkaian komparator ada 2 macam yaitu: 2.1. Komparator inverting
      a. Dengan Vref = 0 Volt
      Rangkaian komparator inverting dengan tegangan input Vi berupa gelombang segitiga dan tegangan referensi Vref = 0 Volt adalah seperti gambar 88.
      Untuk menghitung berapa tegangan ambang VUT(Upper Threshold Voltage) atau VLT(Lower Threshold Voltage) maka lakukan pemisalan kondisi tegangan output VO sama dengan +Vsat atau –Vsat.
      Misalkan tegangan output VO = +Vsat seperti gambar 89 maka dapat dihitung tegangan ambang atas VUT:
      Misalkan tegangan output VO = -Vsat seperti gambar 90 maka dapat dihitung tegangan ambang bawah VLT:
      Bentuk gelombang tegangan output VO adalah seperti pada gambar 91 dan karakteristik I-O seperti pada gambar 92.
      b. Dengan Vref 0 Volt
      Rangkaian komparator inverting dengan tegangan input Vi berupa gelombang segitiga dan tegangan referensi Vref 0 Volt adalah seperti gambar 93.
      Misalkan tegangan output VO = +Vsat seperti gambar 94 maka dapat dihitung tegangan ambang atas VUT:
      Misalkan tegangan output VO = -Vsat seperti gambar 95 maka dapat dihitung tegangan ambang bawah VLT:
      Bentuk gelombang tegangan output VO adalah seperti pada gambar 96 dan gambar 97 dan karakteristik I-O seperti pada gambar 98 dan gambar 99.
      4.2.2. Komparator non inverting
      a. Dengan Vref = 0 Volt
      Rangkaian komparator non inverting dengan tegangan input Vi berupa gelombang segitiga dan tegangan referensi Vref = 0 Volt adalah seperti gambar 100.

      Untuk menghitung berapa tegangan ambang VUT atau VLT maka lakukan pemisalan kondisi tegangan output VO sama dengan +Vsat atau –Vsat.
      Misalkan tegangan output VO = +Vsat seperti gambar 101 maka dapat dihitung tegangan ambang atas VLT:
      Misalkan tegangan output VO = -Vsat seperti gambar 102 maka dapat dihitung tegangan ambang bawah VUT:
      Bentuk gelombang tegangan output VO adalah seperti pada gambar 103 dan karakteristik I-O seperti pada gambar 104.
      b. Dengan Vref 0 Volt
      Rangkaian komparator non inverting dengan tegangan input Vi berupa gelombang segitiga dan tegangan referensi Vref 0 Volt adalah seperti gambar 105
      Misalkan tegangan output VO = +Vsat seperti gambar 106 maka dapat dihitung tegangan ambang atas VLT:
      Misalkan tegangan output VO = -Vsat seperti gambar 107 maka dapat dihitung tegangan ambang bawah VUT:
      Bentuk gelombang tegangan output VO adalah seperti pada gambar 108 dan gambar 109 dan karakteristik I-O seperti pada gambar 110 dan gambar 111.

      sehingga
      4. Amplifier


      Gambar 112 memperlihatkan rangkaian op-amp dengan kurva karakteristik Input-Output yaitu hubungan Vi terhadap VO. Dari kurva Karakteristik I-O tersebut amplifier bekerja pada karakteristik yang membentuk hubungan linear artinya semakin besar Vi maka semakin besar juga VO dan sebaliknya. Operasi amplifier menghindari output dalam kondisi saturasi karena akan membuat cacat keluaran outputnya. 
      Ciri-ciri rangkaian amplifier adalah adanya feedback (umpan balik) negatif dari output ke input inverting (-) op-amp.
      Rangkaian amplifier ada 4 macam, yaitu:
      3.1 Inverting Amplifier
                Adapun rangkaian inverting amplifier adalah seperti gambar 113 dimana sesuai dengan namanya yaitu dengan input dimasukkan ke kaki inverting (pembalik) sehingga output akan dibalik atau beda fasa sebesar 180 derajat.
      Untuk mencari turunan penguatan tegangan ACL maka rangkaian dimisalkan dahulu dengan input dc positif, seperti gambar 114. Dalam analisa rangkaian amplifier disyaratkan op-amp bekerja ideal sehingga  tegangan differensial (selisih tegangan di kaki non inverting terhadap tegangan di kaki inverting) E= 0, artinya VA (tegangan di titik A) = 0 sehingga arus yang melewati Ri sama dengan arus yang melewati Rf karena arus yang masuk ke kaki inverting sangat kecil karena sifat op-amp dimana impendasi (Zi) inputnya sangat besar. Adapun rangkaian pengganti untuk menghitung arus I adalah seperti gambar 115.
      Dari rangkaian gambar 114 dengan E= 0 maka VA = 0 sehingga rangkaian dapat disederhanakan menjadi seperti gambar 51 untuk mencari arus I.







      Bentuk gelombang tegangan output VO adalah seperti pada gambar 116 dan karakteristik I-O seperti pada gambar 117.
      3.1.1 Inverting Adder Amplifier
      Rangkaian inverting adder amplifier (pembalik) adalah seperti gambar 118. 
      Dari gambar 118 dengan memakai hukum Kirchoff  dimana arus masuk sama dengan arus keluar I = I1 + I2 + I3  sehingga arus di Rf sama dengan jumlah arus di R1, R2 dan R3.
      Syarat op-amp ideal adalah E= 0 sehingga VA = 0
      maka,





      3.2 Non Inverting Amplifier
                Rangkaian non inverting amplifier (tidak membalik) adalah seperti gambar 122, input dimasukkan ke kaki non inverting sehingga tegangan output yang dihasilkan sefasa dengan tegangan input. Untuk mencari turunan penguatan tegangan ACL maka rangkaian dimisalkan dahulu dengan input dc positif, seperti gambar 123
      Dari rangkaian gambar 123 dengan syarat op-amp ideal E= 0 maka VA = Vi sehingga rangkaian dapat disederhanakan untuk mencari arus I seperti gambar 124.
      Adapun hasil simulasi bentuk gelombang I-O seperti gambar 125 dan karakteristik I-O seperti gambar dibawah

      3.2.1 Non Inverting Adder Amplifier
      Rangkaian non inverting adder amplifier (pembalik) adalah seperti gambar 127.
       Dari gambar 127 dengan memakai metoda loop tertutup untuk mencari arus loop sehingga bisa dicari tegangan input Vi. 
      Syarat op-amp ideal adalah E= 0 sehingga VA = Vi
      maka,
      substitusi I
      substitusi Vi
      Jika memakai tiga input seperti gambar 128 maka rumus tegangan VO dapat dicari dengan metoda loop tertutup tersebut, adapun turunan rumus VO adalah:
      Selesaikan dua persamaan diatas dengan metoda matrik untuk mencari I1, didapatkan;
      substitusi I,
      substitusi Vi
      dan bila Rf = 2R maka Vo=V1+V2+V3
      3.3 Voltage Follower
                Rangkaian voltage follower atau buffer dimana ACL = 1, adalah seperti pada gambar 129.
      Syarat op-amp ideal adalah E= 0 maka VO = Vi sehingga
       Bentuk gelombang tegangan input dan gelombang tegangan output adalah sama karena ACL = 1 dan sefasa karena Vi diinputkan ke kaki non inverting seperti pada gambar 130 dan kurva karakteristik I-O seperti gambar 131.
    - Komponen Input
    • Water Level Sensor

      Water level merupakan sensor yang berfungsi untuk mendeteksi ketinggian air dengan output analog kemudian diolah menggunakan mikrokontroler. Pada rangkaian ini bisa digunakan capcitor dan induktor agar switch relay tidak berpindah-pindah. Cara kerja sensor ini adalah pembacaan resistansi yang dihasilkan air yang mengenai garis lempengan pada sensor. Semakin banyak air yang mengenai lempengan tersebut, maka nilai resistansinya akan semakin kecil dan sebaliknya.

      Grafik respon water level sensor

    • Rain Sensor

      Rain sensor merupakan sensor yang berfungsi untuk mendeteksi hujan turun atau tidak. Intinya sensor ini jika terkena air pada papan sensornya maka resistansinya akan berubah, semakin banyak semakin kecil dan sebaliknya. Pada sensor ini, terdapat integrated circuit atau IC (komponen dasar yang terdiri dari resistor, transistor, dan lain-lain) komparator yang berfungsi memberikan sinyal berupa logika ‘on’ dan ‘off’.

      Sensor hujan adalah jenis sensor yang berfungsi untuk mendeteksi terjadinya hujan atau tidak, yang dapat difungsikan dalam segala macam aplikasi dalam kehidupan sehari – hari. Dipasaran sensor ini dijual dalam bentuk module sehingga hanya perlu menyediakan kabel jumper untuk dihubungkan ke mikrokontroler atau Arduino.

      Prinsip kerja dari module sensor ini yaitu pada saat ada air hujan turun dan mengenai panel sensor maka akan terjadi proses elektrolisasi oleh air hujan. Dan karena air hujan termasuk dalam golongan cairan elektrolit yang dimana cairan tersebut akan menghantarkan arus listrik.

      Pada sensor hujan ini terdapat ic komparator yang dimana output dari sensor ini dapat berupa logika high dan low (on atau off). Serta pada modul sensor ini terdapat output yang berupa tegangan pula. Sehingga dapat dikoneksikan ke pin khusus Arduino yaitu Analog Digital Converter.

      Dengan singkat kata, sensor ini dapat digunakan untuk memantau kondisi ada tidaknya hujan di lingkungan luar yang dimana output dari sensor ini dapat berupa sinyal analog maupun sinyal digital.

      Grafik respon rain sensor


    • Push Button

      Push Button adalah saklar yang berupa tombol dan berfungsi sebagai pemutus atau penyambung arus listrik dari sumber arus ke beban listrik. Suatu sistem saklar tekan push button terdiri dari saklar tekan start, stop reset dan saklar tekan untuk emergency. Push button memiliki kontak NC (normally close) dan NO (normally open).

      Prinsip kerja Push Button adalah apabila dalam keadaan normal tidak ditekan maka kontak tidak berubah, apabila ditekan maka kontak NC akan berfungsi sebagai stop (memberhentikan) dan kontak NO akan berfungsi sebagai start (menjalankan) biasanya digunakan pada sistem pengontrolan motor – motor induksi untuk menjalankan mematikan motor pada industri – industri.

      Push button dibedakan menjadi beberapa tipe, yaitu:

      a. Tipe Normally Open (NO)
      Tombol ini disebut juga dengan tombol start karena kontak akan menutup bila ditekan dan kembali terbuka bila dilepaskan. Bila tombol ditekan maka kontak bergerak akan menyentuh kontak tetap sehingga arus listrik akan mengalir.

      b. Tipe Normally Close (NC)
      Tombol ini disebut juga dengan tombol stop karena kontak akan membuka bila ditekan dan kembali tertutup bila dilepaskan. Kontak bergerak akan lepas dari kontak tetap sehingga arus listrik akan terputus.

      c. Tipe NC dan NO
      Tipe ini kontak memiliki 4 buah terminal baut, sehingga bila tombol tidak ditekan maka sepasang kontak akan NC dan kontak lain akan NO, bila tombol ditekan maka kontak tertutup akan membuka dan kontak yang membuka akan tertutup

    - Komponen Output
    • Relay



      Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi.

      Relay terdapat 4 bagian penting yaitu electromagnet (coil), Armature, Switch Contact Point (saklar) dan spring. Untuk lebih jelasnya silahkan lihat gambar di bawah ini.

      Kontak point relay terdiri dari 2 jenis yaitu:

      • Normally Close (NC) yaitu kondisi awal sebelum diaktifkan akan selalu berada pada posisi close (tertutup).
      • Normally Open (NO) yaitu kondisi awal sebelum diaktifkan akan selalu berapa pada posisi open (terbuka).

      Berdasarkan gambar diatas, sebuah Besi (Iron Core) yang dililit oleh sebuah kumparan Coil yang berfungsi untuk mengendalikan Besi tersebut. Apabila Kumparan Coil diberikan arus listrik, maka akan timbul gaya Elektromagnet yang kemudian menarik Armature untuk berpindah dari Posisi sebelumnya (NC) ke posisi baru (NO) sehingga menjadi Saklar yang dapat menghantarkan arus listrik di posisi barunya (NO). Posisi dimana Armature tersebut berada sebelumnya (NC) akan menjadi OPEN atau tidak terhubung. Pada saat tidak dialiri arus listrik, Armature akan kembali lagi ke posisi Awal (NC). Coil yang digunakan oleh Relay untuk menarik Contact Poin ke Posisi Close pada umumnya hanya membutuhkan arus listrik yang relatif kecil.

    • LED



      LED merupakan keluarga dari Dioda yang terbuat dari Semikonduktor. Cara kerjanya pun hampir sama dengan Dioda yang memiliki dua kutub yaitu kutub Positif (P) dan Kutub Negatif (N). LED hanya akan memancarkan cahaya apabila dialiri tegangan maju (bias forward) dari Anoda menuju ke Katoda.

      Ketika LED dialiri tegangan maju atau bias forward yaitu dari Anoda (P) menuju ke Katoda (K), Kelebihan Elektron pada N-Type material akan berpindah ke wilayah yang kelebihan Hole (lubang) yaitu wilayah yang bermuatan positif (P-Type material). Saat Elektron berjumpa dengan Hole akan melepaskan photon dan memancarkan cahaya monokromatik (satu warna). LED atau Light Emitting Diode yang memancarkan cahaya ketika dialiri tegangan maju ini juga dapat digolongkan sebagai Transduser yang dapat mengubah Energi Listrik menjadi Energi Cahaya.

      Tegangan maju LED

    • Heater



      Heater merupakan alat yang digunakan sebagai pemanas air, alat ini menggunakan daya sebesar 100 watt yang yang nantinya daya terseput dikonversikan menjadi energi panas yang suhunya akan meningkaat 1 derajat setiap kenaikan tegangan 1V.

    • Motor DC

      Motor yang beroperasi pada arus DC disebut sebagai Motor DC dan motor yang menggunakan arus AC disebut sebagai motor AC. Umumnya kamu tidak akan terlalu banyak menjumpai motor AC tetapi motor DC hampir digunakan dimana saja, yang mana di bidang listrik dinamai DC motor.

      Motor DC adalah motor listrik yang merupakan perangkat elektromekanis yang menggunakan interaksi medan magnet dan konduktor untuk mengubah energi listrik menjadi energi mekanik putar, dimana motor DC dirancang untuk dijalankan dari sumber daya arus searah (DC). Sudah lebih dari 100 tahun motor DC brush (disikat) digunakan dalam industri serta aplikasi domestik.

      Prinsip Kerja Motor DC

      Komponen utama dari Motor DC adalah Winding/liltan, Magnet, Rotors, Brushes, Stator dan sumber arus searah (Arus DC). Ketika armature ditempatkan dalam medan magnet yang dihasilkan oleh magnet maka armature diputar dengan menggunakan arus searah, hal ini menghasilkan gaya mekanik. Dengan memanfaatkan putaran motor DC banyak jenis pekerjaan yang dapat dikerjakan.

    • Buzzer



      Buzzer adalah sebuah komponen elektronika yang dapat mengubah sinyal listrik menjadi getaran suara. Buzzer dapat bekerja dengan baik dalam menghasilkan frekuensi kisaran 1-5 KHz hingga 100 KHz untuk aplikasi ultrasound. Buzzer ini biasa dipakai pada sistem alarm. Juga bisa digunakan sebagai indikasi suara. Buzzer adalah komponen elektronika yang tergolong tranduser. Sederhananya buzzer mempunyai 2 buah kaki yaitu positive dan negative. Untuk menggunakannya secara sederhana kita bisa memberi tegangan positive dan negative 3 - 12V.

      Cara kerja buzzer

      Tegangan Listrik yang mengalir ke buzzer akan menyebabkan gerakan mekanis, gerakan tersebut akan diubah menjadi suara atau bunyi yang dapat didengar oleh manusia.

    - Komponen Lainnya
    • Ground



      Ground adalah suatu sistem instalasi listrik yang bisa meniadakan beda potensial sebagai pelepasan muatan listrik berlebih pada suatu instalasi listrik dengan cara mengalirkannya ke tanah sehingga istilah sehari hari yang sering digunakan yaitu pentanahan atau arde.

    • Logicstate



      Logicstate berfungsi untuk menunjukkan keadaan logika o dan logika 1. Sinyal biner adalah sinyal digital yang hanya memiliki dua nilai yang valid. Dalam istilah fisik, pengertian logis dari sinyal biner ditentukan oleh level tegangan atau nilai arus sinyal, dan ini pada gilirannya ditentukan oleh teknologi perangkat. Dalam sirkuit TTL, misalnya, keadaan sebenarnya diwakili oleh logika 1, kira-kira sama dengan +5 volt pada garis sinyal; logika 0 kira-kira 0 volt. Tingkat tegangan antara 0 dan +5 volt dianggap tidak ditentukan.

    1. Fixed bias yaitu, arus bias IB didapat dari VCC yang dihubungkan ke kaki B melewati tahanan R seperti gambar 58. Gambar 58 Rangkaian Fixed bias maka, dimana, dan 2. Emitter-Stabilized Bias adalah rangkaian Fixed bias yang ditambahkan tahanan RE seperti gambar 59. Gambar 59 Rangkaian Emitter-Stabilized Bias maka, B CC BE B R V V I   C B I  .I E B C I  I  I B E CC BE B R R V V I  ( 1

    Grafik respon rain sensor :
    • Vibration Sensor
        Sensor getaran atau vibration sensor merupakan jenis sensor yang berfungsi untuk mendeteksi adanya getaran dan akan diubah ke dalam sinyal listrik.


    grafik respon sensor  vibration




    • Sensor  kelembapan
    Sensor Kelembaban Tegangan Rendah Seri HIH-5030/5031
    beroperasi hingga 2,7 Vdc, seringkali ideal pada baterai
    sistem di mana suplainya adalah nominal 3 Vdc.
    HIH 5030/5031 melengkapi saluran 5 Vdc kami yang sudah ada
    Sensor kelembaban SMD (Surface Mount Device). SMD
    kemasan pada pita dan gulungan memungkinkan untuk digunakan dalam volume tinggi,
    manufaktur pengambilan dan tempat otomatis, menghilangkan timbal
    ketidaksejajaran pada lubang tembus papan sirkuit tercetak.
    Sensor Kelembaban Seri HIH-5030/5031 dirancang
    khusus untuk OEM (Original Equipment) volume tinggi
    Produsen) pengguna.
    Input langsung ke pengontrol atau perangkat lain dimungkinkan oleh
    sensor ini mendekati keluaran tegangan linier. Dengan arus yang khas
    penarikan hanya 200 A, Seri HIH-5030/5031 idealnya
    cocok untuk banyak sistem yang dioperasikan dengan baterai dengan konsumsi daya rendah.
    Pertukaran sensor yang ketat mengurangi atau menghilangkan OEM
    biaya kalibrasi produksi.  

    grafik respon sensor kelembapan 


    a.LDR (Light Dependent Resistor)
           merupakan salah satu komponen resistor yang nilai resistansinya akan berubah-ubah sesuai dengan intensitas cahaya yang mengenai sensor ini. LDR juga dapat digunakan sebagai sensor cahaya. Perlu diketahui bahwa nilai resistansi dari sensor ini sangat bergantung pada intensitas cahaya. Semakin banyak cahaya yang mengenainya, maka akan semakin menurun nilai resistansinya. Sebaliknya jika semakin sedikit cahaya yang mengenai sensor (gelap), maka nilai hambatannya akan menjadi semakin besar sehingga arus listrik yang mengalir akan terhambat.




    Umumnya Sensor LDR memiliki nilai hambatan 200 Kilo Ohm pada saat dalam kondisi sedikit cahaya (gelap), dan akan menurun menjadi 500 Ohm pada kondisi terkena banyak cahaya. Tak heran jika komponen elektronika peka cahaya ini banyak diimplementasikan sebagai sensor lampu penerang jalan, lampu kamar tidur, alarm dan lain-lain.
    LDR berfungsi sebagai sebuah sensor cahaya dalam berbagai macam rangkaian elektronika seperti saklar otomatis berdasarkan cahaya yang jika sensor terkena cahaya maka arus listrik akan mengalir(ON) dan sebaliknya jika sensor dalam kondisi minim cahaya(gelap) maka aliran listrik akan terhambat(OFF). LDR juga sering digunakan sebagai sensor lampu penerang jalan otomatis, lampu kamar tidur, alarm, rangkaian anti maling otomatis menggunakan laser, sutter kamera otomatis, dan masih banyak lagi yang lainnya.
    Prinsip kerja LDR sangat sederhana tak jauh berbeda dengan variable resistor pada umumnya. LDR dipasang pada berbagai macam rangkaian elektronika dan dapat memutus dan menyambungkan aliran listrik berdasarkan cahaya. Semakin banyak cahaya yang mengenai LDR maka nilai resistansinya akan menurun, dan sebaliknya semakin sedikit cahaya yang mengenai LDR maka nilai hambatannya akan semakin membesar.
    grafik respon sensor LDR






    water sensor
    Fungsi utama dari water sensor adalah untuk menyimpan air untuk kebutuhan sehari-hari, terutama jika ada masalah kekurangan pasokan air, seperti listrik padam. Secara umum, toren air secara otomatis dikendalikan oleh mekanisme pengatur yang mengisi air ketika air di dalam toren hampir penuh.
grafik respon water sensor




5. Percobaan [kembali]

   

A. Langkah Percobaan


   Prosedur Percobaan
1. Buka aplikasi proteus
2. Pilih komponen yang dibutuhkan, pada rangkaian ini dibutukan komponen led, buzzer, water level sensor, taouch sensor, NTC, rain sensor, relay, transistor bipolar dan mosfet, resistor, kapasitor, induktor, baterai
3. Rangkai setiap komponen menjadi rangkaian yang diinginkan
4. Ubah spesifikasi komponen sesuai kebutuhan
5. Jalankan simulasi rangkaian.
    

           Gambar Rangkaian 






    Pada percobaan ini dilakukan dengan prosedur sebagai berikut :

  • Untuk membuat rangkaian ini, pertama, siapkan semua alat dan komponen yang bersangkutan, di ambil dari library proteus
  • Letakkan semua alat dan bahan sesuai dengan posisi dimana alat dan bahan terletak.
  • Tepatkan posisi letak nya dengan gambar rangkaian
  • Selanjutnya, hubungkan semua alat dan bahan menjadi suatu rangkaian yang utuh 
  • Lalu mencoba menjalankan rangkaian, jika tidak terjadi error, maka motor akan bergerak yang berarti rangkaian bekerja
B. Gambar Rangkaian dan Prinsip Kerja

Gambar Rangkaian :

Prinsip Kerja :

a. prinsip rangkaian pada vibration sensor
gambar rangkaian vibration sensor

    Vibration sensor berfungsi untuk mendeteksi getaran pada pintu saat seseorang masuk lalu kemudian mengubah getaran menjadi sinyal listrik kemudian melewati R33 lalu diumpankan ke voltage follower dimana tegangan masuk dan keluar itu sama sedangkan arus diperkuat dua kali sehingga vbe yang yang mengalir sebesar 0,88 V yang membuat transistor aktif sehingga relay berpindah ke kiri dan menghidupkan motor untuk mengisi tank air.              


b. Prinsip rangkaian pada water level sensor

gambar rangkaian water sensor

    Water level sensor berfungsi untuk mendeteksi ketinggian air dalam tank. Saat air masih mengisi tank maka resistansi besar sehingga tegangan yang dikeluarkanpun kecil. Maka relay saat ini masih dalam keadaan mati karena Vbe yang masih belum bisa mengaktifkan transistor yang ditandai dengan hidupnya motor untuk memompa air dan led biru. Dan kemudian ketika air sudah mulai penuh maka resistansi akan kecil sehingga tegangan yang dikeluarkanpun besar yaitu +4,97 V diumpankan ke R1 maka Vbe +0,71 V cukup untuk mengaktifkan transistor. Dengan aktifnya transistor, maka ada arus dari power supply menuju relay diteruskan ke kaki kolektor transistor, kemudian menuju kaki emitor transistor, R2, dan diteruskan ke ground, sehingga relay menjadi akan berpindah. Dengan aktifnya relay, maka posisi switch berpindah dari kanan ke kiri yang menyebabkan terbentuk rangkaian loop tertutup dan arus mengalir mengaktifkan led hijau sebagai indikator bahwa air sudah penuh.

c. Prinsip rangkaian pada rain sensor
gambar rangkaian rain sensor



    Pada rain sensor berguna untuk mendeteksi kebocoran tank. Ketika ada kebocoran maka sensor berlogika 1 sehingga tegangan yang masuk adalah 5V kemudian diperkuat dengan non inverting amplifier dimana penguatannya dua kali yaitu R20/R19+1 sehingga tegangan outputnya menjadi 10 V. Kemudian diteruskan ke resistor setelah itu tegangan Vbe sebesar 0,81 V akan mengaktifkan transistor sehingga dari supplai menuju relay lalu ke kolektor dan emitor lalu ke ground dengan adanya arus melewati relay maka switch relay bergeser dan akan megaktifkan buzzer sebagai peringatan telah terjadi kebocoran dan indikator led kuning menyala.

d. Prinsip rangkaian pada LDR sensor

gambar rangkaian sensor LDR


    Pada sensor LDR untuk mendeteksi adanya cahaya yang masuk ke dalam kolam yang diletakan di atap kolam . Ketika ada orang maka logika menjadi 1 sehingga tegangan yang masuk adalah 5V diteruskan ke R31 kemudian diperkuat dengan  inverting detektor  dimana vref  lebih besar dari v in dan penguatannya dua ratus ribu kali sehingga tegangan outputnya menjadi 11 V. Kemudian diteruskan ke R8 setelah itu tegangan Vbe sebesar 0,81 V akan mengaktifkan transistor sehingga dari supplai menuju relay lalu ke kolektor dan emitor lalu ke ground dengan adanya arus melewati relay maka switch relay bergeser.

e. Prinsip rangkaian pada kelembapan
gambar rangkaian sensor kelembapan (HIH-5030)

                                         
     pada sensor kelembapan untuk mendeteksi kelembapan yang  diletakan di dinding kolam . ketika sensor diatas 55 maka sensor aktif     dan diteruskan ke   non inverting detektor dimana penguatnya dua ratus ribu kali penguat  dan v in lebih besar dari v ref dan didapat output menjadi 11v .Kemudian diteruskan ke R8 setelah itu tegangan Vbe sebesar 0,81 V akan mengaktifkan transistor sehingga dari supplai menuju relay lalu ke kolektor dan emitor lalu ke ground dengan adanya arus melewati relay maka switch relay bergeser.


 video percobaan



6. Download File [kembali]


File HTML [unduh]

Rangkaian Simulasi Proteus [unduh]

File Video Rangkain [unduh]

Datasheet Op-Amp [unduh]

Datasheet LED [unduh]

Datasheet LDR [unduh]

Datasheet Batterai [unduh]

Datasheet Speaker [unduh]

Datasheet Motor DC [unduh]

Datasheet Relay [unduh]

Datasheet Resistor [unduh]

Datasheet Diode [unduh]

Datasheet Buzzer [unduh]

Datasheet Voltmeter [unduh]

Datasheet Transistor NPN [unduh]

Datasheet Optocoupler [unduh]

Datasheet Load cell [unduh]

Datasheet aol [unduh ]

Datasheet kelembapan sensor [unduh ]

 Datasheet water sensor [ unduh ]


Download datasheet transistor 2N1711 klik disini 

Download datasheet transistor 2N2222 klik disini 

Download datasheet op amp 741 klik disini 

Download datasheet op amp 1458 klik disini

Download datasheet op amp 3403 klik disini









[menuju awal]

 








Komentar

Postingan populer dari blog ini